

© D. Samanta, IIT

PDS Lab
Section 16

Autumn-2018

Tutorial 4

Arrays

An array is a sequence of data item of homogeneous values (same
type).

Arrays are of two types:

1. One dimensional arrays (1D array)
2. Multidimensional arrays (2D, #D, etc.)

1D array

2D array

© D. Samanta, IIT

3D array

Example

Note:

• Homogenous data types

• All the data items constituting the group share the same name,

that is, the name of the array.

• Individual elements are accessed by specifying the index.

• Range of indices varies between 0 and n-1 (both inclusive).

x is a one dimensional
array with 10‐elements

x[0] x[1] x[2] x[9]

© D. Samanta, IIT

Declaration of Arrays

One Dimensional Array Declaration

Like variables, the arrays that are used in a program must be declared
before they are used.

General syntax:
 type array-name [size];

type specifies the type of element that will be contained in the array
(int, float, char, etc.)

size is an integer constant which indicates the maximum number of
elements that can be stored inside the array.

Example

 int marks[50];

 Here, marks is an array containing a maximum of 50 integers.

Be careful!
There is no element like marks[50], marks[-1],
marks[100], etc.

© D. Samanta, IIT

Examples

int x[10];

char line[80];

float points[150];

char name[35];

Be careful!

The following kind of usage is illegal:
 int n;

 int marks[n];

© D. Samanta, IIT

Initialization of Arrays

One Dimensional Array Initialization

General form

type array_name[size] = { list of values };

Example

int marks[5] = {72, 83, 65, 80, 76};

char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

Some special cases
1. If the number of values in the list is less than the number of

elements, then the remaining elements are automatically set to
zero.

Example

 float total[5] = {24.2, -12.5, 35.1};

 total[0]=24.2 total[1]=-12.5
 total[2]=35.1 total[3]=0.0
 total[4]=0.0

© D. Samanta, IIT

2. If the size declared is less than the elements in the initialization,
then the excess elements will be ignored.

Example

 float total[5] ={2.2,-1.5,3.5,0.1,0.2, 0.4};

The last element namely 0.4 will be ignored!

3. The size may be omitted. In such cases the compiler

automatically allocates enough space for all initialized elements.

Example

int flag[] = {1, 1, 1, 0};

char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

Initialization of array during runtime

Example

int marks[5]; //Declaration

for (int i=0; i < 5; ++i)

 scanf(“%d”,&marks[i]); //Reading and storing

© D. Samanta, IIT

How an Array is Stored in Computer?

Starting from a given memory location, the successive array
elements are allocated space in consecutive memory locations.

 Here, x is the starting address of the array in memory.

The array index starts at zero. That is, the location of a[0] is at x

Let k is the number of bytes allocated per array element.

Element a[i] is allocated at the memory location having address
x + i*k

Be careful!

In C, while accessing array elements, array bounds are not checked.

Example:

 int marks[5];

 marks[8] = 75;

The above assignment would not report any error; however, execution
will fail.

Rather, it may result in unpredictable program results.

x x+k x+2k

a

© D. Samanta, IIT

Average Calculation

Example

Storing elements into an array and accessing them

int main()

 {

 int marks[50];

 int i=0, sum=0;

//Enter the marks obtained in a subject and store them in the array

 for (i=0; i <50; ++i) {

 printf(“Enter the mark for the %d-th ubject\n”,i+1);

 scanf(“%d”,&marks[i]); // read an array element

 }

// Calculate the average of the marks in the subject

for (i=0; i <50; ++i)

 sum += marks[i]; //use an array element

 printf (“Average Mark = %f \n ”,sum/50);

return 0;

}

© D. Samanta, IIT

2D Arrays

Example

The table contains a total of 20 values, five in each line.

The table can be regarded as a matrix consisting of four rows and
five columns.

C allows us to define such tables of items by using 2D arrays.

General form:

type array_name [row_size][column_size];

Example

 int marks[4][5];

 float sales[12][25];

 double matrix[100][100];

© D. Samanta, IIT

Accessing Elements of 2D Array

Similar to that for 1D array, but use two indices.

Example

 x[m][n] = 0;

 c[i][k] += a[i][j] * b[j][k];

First indicates row, second indicates column.

Both the indices may be expressions which would evaluate to integer
values.

x = sqrt (a[j*3][k+2]);

Strong 2D Arrays in Memory

Starting from a given memory location, the elements are stored row-
wise in consecutive memory locations.

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0]
a[2][1] a[2][2] a[2][3]

© D. Samanta, IIT

Example

Suppose,

x: starting address of the array in memory
c: number of columns
k: number of bytes allocated per array element

Then
a[i][j] :: is allocated memory location at address

x + (i * c + j) * k

Reading the elements for 2D Array

Example

for(i=0; i < nrow; i++)

 for(j=0; j < ncol; j++)

 scanf(“%f”, &a[i][j]);

© D. Samanta, IIT

Reading a Matrix Amxn

© D. Samanta, IIT

Matrix Addition

#include <stdio.h>
#define m 10;
#define n 15;

main ()
{

int a[m][n];
int b[m[n];
// Read the array a
// Read the array b
for (i=0; i<m; i++)

for (j=0; j<m; j++)
c[i][j] = a[i][j]+ b[i][j];

}

© D. Samanta, IIT

Matrix Multiplication

© D. Samanta, IIT

Strings

• A string is an array of characters.
• Individual characters are stored in memory in ASCII code.
• A string is represented as a sequence of characters

terminated by the null (‘\0’) character.

Example

Example

 Declaration of strings

char name[30];

char city[];

char *dob;

• A string may be initialized at the time of declaration.

char city[15] = “Calcutta”;

char city[15]
={‘C’,‘a’,‘l’,’c’,‘u’,‘t’,’t’,‘a’};

char dob[] = “12-10-1975”;

Reading a line of text

• In many applications, we need to read in an entire line of text
(including blank spaces).

“Hello”  ‘\0
’

l e H o l

© D. Samanta, IIT

• We can use the getchar() function for the purpose.

Example

Writing a string on the screen

We can use printf with the “%s” format specification.

 printf (“\n %s”, name);

Alternatively, we can use printf with the “%c” format and each
character one after another.

 i = 0;

 while (name[i++] !=‘\0’)
 printf(“%c”, name[i]);

char line[81];
int ch, c=0;
:
:
do
 {
 ch = getchar();
 line[c] = ch;
 c++;
 }
while (ch != ‘\n’);

line[c] = ‘\0’;

Read characters
until CR (‘\n’)
is encountered

Make it a valid
string

© D. Samanta, IIT

String functions

There exists a set of C library functions for character string
manipulation.

 strcpy :: string copy

 strlen :: string length
 strcmp :: string comparison
 strtcat :: string concatenation

• It is required to add the line.

#include <string.h>

strcpy()

• Works very much like a string assignment operator.

 strcpy (string1, string2);

• Assigns the contents of string2 to string1.

Example

 strcpy (city, “Calcutta”);

 strcpy (city, mycity);

• Warning:

• Assignment operator do not work for strings.

 city = “Calcutta”; INVALID

© D. Samanta, IIT

strlen()

• Counts and returns the number of characters in a string.

len = strlen (string); /* Returns an int */

• The null character (‘\0’) at the end is not counted.

Example

strcmp()

Compares two character strings.

 int strcmp (string1, string2);

Compares the two strings and returns 0 if they are identical; non-zero
otherwise.

Example

if (strcmp (city, “Delhi”) = = 0)

 { …… }

if (strcmp (city1, city2) ! = 0)

 { …… }

char city[15];

int n;

:

:

strcpy (city, “Calcutta”);

n = strlen (city);

n is assigned 8

© D. Samanta, IIT

strcat()

• Joins or concatenates two strings together.

 strcat (string1, string2);

• string2 is appended to the end of string1.

• The null character at the end of string1 is removed, and
string2 is joined at that point.

Example

strcpy (name1, “Amit “);

strcpy (name2, “Roy“);
strcat(name1, name2);

imA t

imA ‘\0’t

yoR ‘\0’

yoR ‘\0’

© D. Samanta, IIT

Example

Read a text and count the number of uppercase letters in it.

#include <stdio.h>
#include <string.h>
main()
{
 char line[81];
 int i, n, count=0;
 scanf (“%[^\n]”, line);
 n = strlen (line);
 for (i=0; i<n; i++)
 {
 if (isupper (line[i])
 count++;
 }
 printf (“\n The no. of uppercase ltr in the str %s
is %d”,line, count);

© D. Samanta, IIT

Example
Read a text and count the number of words and sentences in it.

#include <stdio.h>
#include <string.h>
#define MAX 1000;
main()
{
 char myText[MAX];
 int i, n, wCount=0; lCount = 0;
 while ((c=getchar()) != 0) myText[i++] = c;
 myText[i] = ‘\0’;
 n = strlen (myText);
 for (i=0; i<n; i++)
 {
 switch(myText[i]){
 case ‘ ‘: wCount++; break;
 case ‘\.’ :lcount++; break;
 }
 printf (“\n The number of words is %d and sentences is
%d”,wCount, lCount);
}

© D. Samanta, IIT

Tutorial Problems

Problem 1

Assume that array A and B are declared as follows:

 int A[5][4];

 int B[4];

Find the errors (if any), in the following program segments

a) for (i=1; i<4; i++)

 scanf(“%f”, B[i]);

b) for (i=1; i<=5; i++)

 for (j=1; i<=4; j++)
 A[i][j] = 0;

c) for (i=4; i>=0; i--)

 scanf(“%d”, &B[i]);

© D. Samanta, IIT

Problem 2

What is the output printed by the following program?

#include<stdio.h>

void main(){

int A[]={0,1,2,3,4,5,6,7};
int n=8, step = 2, i, j, k, l, temp;

for(i=0;i<n-step;i++){

for(j=i;j<i+step;j++){
temp = A[j];
A[j] = A[j+1];
A[j+1] = temp;

 }
step = (step*2)- 1;

}
for(i=0; i<n; i++)printf(“%d “,A[i]);

}

© D. Samanta, IIT

Problem 3

What is output of the following program?

main()

{
int a[5] = { 5, 1, 15, 20, 25 };
int i, j, k;

i = ++a[1] ;
j = a[1]++ ;
k = a[i++] ;

printf ("%d,%d,%d", i, j, k);

}

Problem 4

Write a program to merge two arrays into a single array.

Problem 5

Write a program which will remove all repeated elements except the
first one.

© D. Samanta, IIT

Problem 6

Write a program to store a 2D array of integers into an 1D array of
integers.

Problem 7

Write a program to calculate the value of a polynomial of degree n
for a given value of x.

݂ሺݔሻ ൌ ܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ⋯൅ ܽ଴

Hint: You should store the polynomial into an array.

Problem 8

Figure out the output of the below code. State relevant
assumption if any during computation.
Assume necessary libraries have been included.

 #include <stdio.h>

 int main()
 {
 char *s = "Harry Potter";
 s[0] = 'K';
 printf("%s", s);
 return 0;
 }

(a) Segmentation fault on GCC
(b) Karry
(c) Potter

© D. Samanta, IIT

(d) Karry Potter

Problem 9

Figure out the output of the below code. State relevant
assumption if any during computation.
Assume necessary libraries have been included.

#include<stdio.h>
int main()
{
 char *str = "A for Apple"
 "B for Ball"
 "C for Cat";
 puts(str);
 return 0;
 }

(a) Compilation Error at Line 4
(b) A for Apple B for Ball C for Cat
(c) A for Apple " "B for Ball " "C for Cat
(d) A for Apple

Problem 10

Which of the following arrays among arr1, arr2, arr3 are
terminated by a null character during storage in memory.
State relevant assumption if any during computation.
 Assume necessary libraries have been included.

© D. Samanta, IIT

 #include<stdio.h>

 int main()
 {
 char arr1[] = "Five";

char arr2[5] = "Five";

char arr3[]= {'F', 'i', 'v', 'e'};

return 0;
 }

(a) arr1 only
(b) arr1 & arr2
(c) arr2 & arr3
(d) arr3 only

Problem 11

Write a program to store 8 bits (0s, 1s) binary string. The program
should print the decimal value for the string stored.

Problem 12

Read a 1D array containing n elements (n input by user) containing
only 0s and 1s. Print the length of the longest run of 1s. For example,
in the array 01011110011, the length is 4.

Problem 13

Read any 10 names of the cities in India and store then in an array of
strings. Traverse the array to find the city, which has the maximum
number of vowels in the name. In case, two or more cities qualify the
same, then print all of them.

© D. Samanta, IIT

Problem 14

An anagram is a word or phrase formed by rearranging the letters of
another word or phrase. For example, "carthorse" is an anagram of
"orchestra". Write a program which reads two character strings of
same length and prints whether they are anagrams of each other.

Important links:

http://cse.iitkgp.ac.in/~dsamanta/courses/pds/index.html

